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SUMMARY 
 

Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this 
study. Three hundred forty (340) virtual bearing sets totaling 31400 bearings were randomly assembled and tested 
by Monte Carlo (random) number generation. The Monte Carlo results were compared with endurance data from  
51 bearing sets comprising 5321 bearings. A simple algebraic relation was established for the upper and lower L10 
life limits as function of number of bearings failed for any bearing geometry. There is a fifty percent (50%) 
probability that the resultant bearing life will be less than that calculated. The maximum and minimum variation 
between the bearing resultant life and the calculated life correlate with the 90-percent confidence limits for a 
Weibull slope of 1.5. The calculated lives for bearings using a load-life exponent p of 4 for ball bearings and 5 for 
roller bearings correlated with the Monte Carlo generated bearing lives and the bearing data. STLE life factors for 
bearing steel and processing provide a reasonable accounting for differences between bearing life data and 
calculated life. Variations in Weibull slope from the Monte Carlo testing and bearing data correlated. There was 
excellent agreement between percent of individual components failed from Monte Carlo simulation and that 
predicted. 

 
NOMENCLATURE 

 
C, CD dynamic load capacity, N (lbf) 
c stress-life exponent 
e Weibull slope 
h exponent  
L life, number of stress cycles or hr 
L10 10-percent life or life at which 90 percent of a population survives, number of stress cycles or hr 
Lβ characteristic life or life at which 63.2 percent of population fails, number of stress cycles or hr 
N  life, number of stress cycles  
n number of failed bearings or number of elements in population  
P, Peq equivalent radial load, N (lbf) 
p load-life exponent  
S probability of survival, fraction or percent 
V  stressed volume, m3, (in.3) 
Zo depth to the orthogonal shearing stress, m (in.)  
ττττo orthogonal shearing stress, GPa (ksi) 
 
Subscripts 
i ith component or bearing 
ir inner race 
L lower limit 
max maximum 
min minimum 
n number of components 
or outer race 
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re rolling elements 
sys system 
up upper limit 
 
Definitions 
calculated life  the life obtained using the Lundberg-Palmgren life equations 
resultant life the life obtained from the Weibull analysis of bearing systems generated by a Monte Carlo technique 
 

INTRODUCTION 
 

Predicting and verifying rolling-element bearing life is a complex task. Accurate prediction of bearing lives is 
necessary to predict replacement rates, maintain rotating machinery and establish warranty limits on manufactured 
goods. Complicating the issue is the fact that fatigue failure is extremely variable and dependent upon materials, 
processing, and operating conditions. 

Rolling-bearing fatigue life analysis is based on the initiation or first evidence of fatigue spalling on either a 
bearing race or a rolling element (ball or roller). This spalling phenomenon is load cycle dependent. Generally, the 
spall begins in the region of maximum shear stresses, which is located below the contact surface, and propagates 
into a crack network. Failures other than those caused by classical rolling-element fatigue are considered avoidable 
if the bearing is properly designed, handled, installed, lubricated and not overloaded (1). However, under low 
elastohydrodynamic (EHD) lubricant film conditions, rolling-element fatigue can be surface or near-surface initiated 
with the spall propagating into the region of maximum shearing stresses. 

If a number of apparently identical bearings are tested to fatigue at a specific load, there is a wide dispersion in 
life among the various bearings. For a group of 30 or more bearings the ratio of the longest to the shortest life may 
be 20 or more (1). 

In 1939, Weibull (2-4) developed a method and an equation for statistically evaluating the fracture strength of 
materials based upon small population sizes. This method can be and has been applied to analyze, determine, and 
predict the cumulative statistical distribution of fatigue failure or any other phenomenon or physical characteristic 
that manifests a statistical distribution.  

Based upon the work of Weibull (2), Lundberg, and Palmgren (5), in 1947, showed that the probability of 
survival S could be expressed as a power function of the orthogonal shear stress ττττo, life N, depth to the maximum 
orthogonal shear stress Zo, and stressed volume V. That is 

 

 V
Z

N

S h
o

e

oττττ~
1

n1  (1) 

 
From Eq. (1), Lundberg and Palmgren (5) derived the following relation 
 

 L10 = [CD /Peq]p (2) 
 

where CD, the basic dynamic load capacity, is defined as the load that a bearing can carry for one million inner-race 
revolutions with a 90-percent probability of survival, Peq is the equivalent bearing load, and p is the load life 
exponent. The derivation of Eq. (2) is discussed in Zaretsky et al (6). 

The term �basic rating life,� as used in bearing catalogs, usually means the fatigue life exceeded by 90 percent 
of the bearings or the time before which 10 percent of the bearings fail. This basic rating life is referred to as the 
�L10 life� (sometimes called the B10 life or 10-percent life). The 10-percent life is approximately one-seventh of the 
mean life or MTBF (mean time between failure), for a bearing life dispersion curve (1). 

Harris (7,8) analyzed 62 rolling-element bearing endurance sets. These data were obtained from four bearing 
manufacturers, two helicopter manufacturers, three aircraft engine manufacturers, and U.S. Government agency-
sponsored technical reports. The data sets comprised deep-groove radial ball bearings, angular-contact ball bearings, 
and cylindrical roller bearings totaling 7935 bearings. 

Using the Harris data (7,8), Zaretsky, Poplawski, and Miller (9) compared the ratio of the L10 lives of the field 
and laboratory bearing life data to that predicted by various life theories discussed in Ref. (6). For the Lundberg-
Palmgren equations discussed above, the mean ratios of the L10 actual lives divided by the L10 predicted lives 
(determined using STLE life factors (1)) were 14.5, 3.5, and 20.1 for angular-ball bearings, deep-groove ball 
bearings, and cylindrical roller bearings, respectively. While it is probable that all design and operating parameters 
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necessary to more accurately calculate bearing life were not available to Harris (7,8), these bearing data are the best 
compilation in the open literature. 

An issue that occurs from these data and analysis is the variation between bearing life calculations and the 
actual endurance characteristics of the bearings. Experience has shown that endurance tests of groups of identical 
bearings under identical conditions can produce variation in L10 life from group to group that exceeds reasonable 
engineering expectations, that is, where the life is significantly less or more than that calculated. This is an important 
issue for product warranty, comparison of bearings from different sources and variation in life from lot-to-lot from 
the same source. 

In view of the aforementioned, and using the Lundberg-Palmgren analysis (5) as the basis, the objectives of the 
work reported herein are: (a) to determine the variation in rolling-element bearing lives and distribution parameters 
as a function of sample size (number of bearings tested); (b) compare the statistical variation in bearing life due to 
finite sample size to the Harris rolling-element bearing data (7,8); and (c) determine the most likely value of the 
load-life exponent based upon a comparison of the field data of Harris (7,8) to the upper and lower limits (or 90% 
confidence limits) obtained for a Weibull-based Monte Carlo prediction of bearing life. 

 
PROCEDURE 

 
Bearing Life Analysis 

 
G. Lundberg and A. Palmgren (5), using the Weibull equation (2�4), first derived the relationship between 

individual component lives and system life where 
 

 [ ] [ ]∑
=

=
n

i

ee
sys

1

/1/1 iLL  (3) 

 
Using Eq. (1), Lundberg and Palmgren (5) develop equations for the lives of the inner and outer races of a 

bearing and combine them using Eq. (3) to determine the bearing life at a 10-percent probability of failure or the 
time beyond which 90 percent of the bearings will survive where 

  
 [1/L10]

e = [1/Lir]
e + [1/Lor]

e (4) 
 
Unfortunately, Lundberg and Palmgren (5) do not directly calculate the lives of the rolling element (ball or 

rollers) set of the bearing. However, through the benchmarking of the equations with bearing life data by use of a 
material-geometry factor, the life of the rolling elements are implicitly included in the life calculation of Eq. (4).  

The rationale for not including the rolling elements in Eq. (4) appears in the 1945 edition of A. Palmgren�s book 
(10) wherein he states that, ��the fatigue phenomenon which determines the life (of the bearing) usually develops 
on the raceway of one ring or the other. Thus, the rolling elements are not the weakest parts of the bearing � .� The 
data base that Palmgren used to benchmark his and later the Lundberg-Palmgren equations were obtained under 
radially loaded conditions. Under these conditions the life of the rolling elements as a system will be equal or greater 
than the outer race. As a result, failure of the rolling elements in determining bearing life was not initially a 
consideration by Palmgren. Equation (4) should be written as follows 

 
 [1/L10]

e = [1/Lir]
e + [1/Lre]

e + [1/Lor]
e (5) 

 
where the Weibull slope e is the same for each of the components as well as the bearing as a system. 

Comparing Eq. (5) with Eq. (4), the value of the L10 bearing life will be the same. However, the values of the  
Lir and Lor between the two equations will not be the same, but, the ratio of Lor/Lir will remain unchanged.  

In order to account for material and processing variations between the rolling elements and the races, it is 
important to break out the ball or roller life from that of the inner and outer races using Eq. (5). This can be 
accomplished using Zaretsky�s Rule (1) as follows 

 
For radially loaded ball and roller bearings, the life of the rolling element set is equal to or greater than 
the life of the outer race. Let the life of the rolling element set (as a system) be equal to that of the outer 
race.  
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From Eq. (5)  
 

 [1/L10]
e = [1/Lir]

e + 2[1/Lor]
e (6) 

where 
 Lre = Lor 

 
For thrust loaded ball and roller bearings, the life of the rolling element set is equal to or greater than the 
life of the inner race but less than that of the outer race. Let the life of the rolling element set (as a system) 
be equal to that of the inner race.  
 
From Eq. (5)  
 

 [1/L10]
e = 2[1/Lir]

e + [1/Lor]
e (7) 

where 
 Lre = Lir 

  
Examples for using Eqs. (5) to (7) are given in Zaretsky (1). As previously stated, the resulting values for Lir 

and Lor from these equations are not the same as those from Eq. (4). 
 

Bearing Type, Operating Conditions and Calculated Lives 
 

Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this 
study. They were a 6010-size (50-mm bore) deep-groove ball bearing and a 7010-size (50-mm bore) angular-contact 
ball bearing, respectively. The bearing specifications and geometry are summarized in Table 1. For purposes of this 
analysis all life factors such as for material and processing were set to unity since we were interested primarily in the 
qualitative results. However, a lubricant life factor was used as a function of lubricant film parameter from Zaretsky 
(1) for these operating conditions since its effect on the resulting lives of the inner and outer races can be different. 

 
Table 1. Bearing specifications, operating conditions, and lives used in  

assembly and Monte Carlo testing 
Bearing type Deep-groove  

ball bearing 
Angular-contact ball 

bearing 
Bore size, mm 50 50 

Inner race 52 52 Curvatures, 
percent Outer race 52 52 
Ball diameter, mm (in.) 8.73 (11/32) 8.73 (11/32) 
Number of balls 14 19 
Contact angle, deg 0 25 
Load, N (lbs) 950 (214) radial 2800 (630) thrust 
Maximum Hertz stress, GPa (ksi) 1.55 (225) 1.55 (225) 
Lubricant type MIL�L�23699 MIL�L�23699 

Inner race 7.62×10�2 (3) 7.62×10�2 (3) 
Outer race 7.62×10�2 (3) 7.62×10�2 (3) 

Surface finish,  
rms µ (µm) 

Balls 2.54×10�2 (1) 2.54×10�2 (1) 
Operating temperature, ºC (ºF) 135 (275) 135 (275) 

Inner race 0.75 0.79 Lubricant life 
factors Outer race 1.05 1.04 

Component L10 L50 L10 L50 
Inner racea 9547 52123 1974 10775 
Outer racea 38188 208448 7885 43040 
Balla 38118 208448 1974 10775 

Life, hrs  
(see Fig. 1) 

Bearingb 6912 37729 964 5262 
Weibull slope, e 1.11 1.11 

aLife based on Zaretsky�s rule and lubricant life factor (from Ref. (1)). 
bLife based on Lundberg-Palmgren equations (from Ref. (5)) and lubricant life factor (from Ref. (1)). 
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Operating conditions for both bearing types were 
assumed to be 10000 rpm using a MIL�L�23699 
(tetraester based) lubricant at 135 °C (275 °F). The 
respective loads applied to both bearings were 
calculated to result in a maximum Hertz stress on the 
inner race of each bearing of 1.55 GPa (225 ksi). These 
operating conditions are summarized in Table 1.  

The bearing lives were calculated according to 
Lundberg-Palmgren Eqs. (1) and (4) with a lubricant 
life factor. The lives of the inner and outer races were 
calculated together with the lives of the balls using  
Eqs. (6) and (7). These results are also summarized in 
Table 1. Weibull plots of the bearing and their 
individual component lives are shown in Fig. 1. 

 
Virtual Bearing Testing 

 
A rolling-element bearing is composed of  

4 components. These are the inner and outer races and  
a plurality of rolling elements that are positioned and 
retained by a separator (cage) between the two races. 
The life of a bearing is probabilistic and is calculated 
based upon rolling-element fatigue (spalling failure) of 
either the inner or outer races and/or the rolling 
elements. Upon the formation of a spall on anyone of 
these components, the bearing is no longer fit for its 
intended purpose and is subject to being replaced. The 
separator is assumed not to fail under normal operating 
conditions. The variables that affect bearing life are 
discussed in detail in Ref. (1). 

The cumulative distribution of the individual 
components of the two bearing types is shown in the 
two-parameter Weibull plots of Fig. 1. The general 
equation representing these plots is as follows 

 
 
 
 

 10;0  whereln    
1

lnln <<∞<<





=

β
SL

L

L
e

S
 (8) 

 

The Weibull plots shown in Fig. 1 are the 
S

1
lnln  graduated in percent of bearings or components failed as the 

ordinate as a function of ln L, the log of the time or cycles to failure as the abscissa. The tangent of the line is 
designated as the Weibull slope e. The Weibull slope e is indicative of the shape of the cumulative distribution of the 
data. Based upon their database, Lundberg and Palmgren (5) use a value for the Weibull slope e of 1.11. This results 
in an approximately exponential distribution of the bearing failure data. In Eq. (8), Lββββ is the characteristic life or the 
life at which 63.2 percent of the bearings fail. 

It was assumed that for each of the two bearing types described in Table 1 there are three virtual bins containing 
components from which the bearing was assembled. As in a realistic manufacturing process, each of the component 
parts of the respective bearings are grouped in separate bins. Each bin contains either 1000 inner rings, outer rings or 
ball sets. Each component part and ball set is assigned an order number (1, 2, 3, �.1000) corresponding to its life 
correlated to the respective Weibull plots for the components shown in Fig. 1. 
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Fig. 1.—Weibull plots for lives of deep-groove and
   angular-contact ball bearings and their respective
   components. Bore size, 50 mm: maximum Hertz
   stress, 1.55 GPa (225 ksi); speed, 10 000 rpm.
   (a) Deep-groove ball bearing; radial load, 950N 
   (214 lb). (b) Angular-contact ball bearing; thrust 
   load, 2800N (630 lb).



NASA/TM�2003-212186 6

Using Monte Carlo techniques, bearings were 
randomly assembled from the three virtual part bins for 
each bearing type. A 3-by-n matrix was randomly 
generated using the spreadsheet RAND function where  
n was the desired number of bearings to be assembled. 
The life of each individual bearing based upon the weak 
link theory was determined as being the lowest life of the 
randomly selected component of that bearing. Values of 
n were arbitrarily selected to be 2, 3, 4, 5, 6, 8, 10, 12, 
14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 100, 
200, and 1000. All bearings in each set failed; there were 
no suspensions or censoring. Using the method of 
Johnson (11), the resulting lives of each group of n 
bearings were plotted on Weibull plots. A straight line 
was fitted to the data points using the method of least 
squares. The Weibull slope and the L10 and L50 lives 
were determined from the resultant line. A representative 
Weibull plot comprising 30 bearings is shown in Fig. 2. 
For each value of n, the procedure was repeated 10 times 
to estimate variation between trials and to determine the 
maximum and minimum values for the series of 10 trials. 

 
 

 
RESULTS AND DISCUSSION 

 
Endurance Life Variation 

 
A. Palmgren in the 1945 edition of his book (10) presents an excellent discussion of bearing life. If a bearing is 

properly designed, lubricated, operated, and maintained, its service life is limited by rolling-element fatigue. In the 
classical sense, a crack initiates in the subsurface zone of maximum shearing stresses below the running track of one 
of its elements and propagates into a pit or spall that is initially limited in area to that of the Hertzian contact area 
and to the depth of the maximum shearing stresses (1).  

The time it takes for this spall to occur is the measure of the bearing life. According to Palmgren (10), bearing 
life is measured in number of revolutions of the bearing or in the number of hours of bearing operation at a given 
speed. Palmgren (10) states that �it is necessary to weigh, in a suitable manner, the contrary requirements of reliable 
service and low cost. Therefore, it has been decided to define the �estimated life� as that number of bearing 
revolutions or that number of working hours at a certain speed of rotation, which will be reached by 90 percent of all 
bearings.� Palmgren first proposed this definition of bearing life in 1924 (12,13). Today, this is the universally 
accepted definition for most bearing life calculations. As far as we can determine, it is the first probabilistic 
approach to life prediction of machine elements. 

For our study bearings were randomly assembled from the three virtual part bins for each of the two bearing 
types by Monte Carlo (random) number generation. The life of each individual bearing based upon the weak link 
theory was determined as being the life of the lowest lived randomly selected component of that bearing. Using the 
method of Johnson (11), the resulting lives of each group of n bearings were plotted on Weibull plots and the 
Weibull slope and lives were determined (Fig. 2). For each value of n, the procedure was repeated 10 times to 
determine maximum values, minimum values, and the degree of variation between trials. The results are 
summarized in Table 2. 

Table 2 contains the maximum and minimum values of the virtual L10 bearing lives of 10 trials of each group of 
n bearings with corresponding values for Weibull slope e and L50 bearing life. The calculated value was determined 
using the Palmgren-Lundberg equation and a life factor for lubrication�all other life factors were set to unity. The 
maximum and minimum values of the L10 lives as a percent of the calculated L10 life for each group of n bearings 
was determined as follows 
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Fig. 2.—Representative Weibull plot for Monte Carlo
   bearing tests of 50-mm bore deep-groove ball bear-
   ings compared to Weibull plot of calculated lives. 
   Bore size, 50 mm: maximum Hertz stress, 1.55 GPa
   (225 ksi); speed, 10 000 rpm; L10 life, 3938 hr; L50 
   life, 37 087 hr; Weibull slope e, 0.84; failure index, 
   30 out of 30.
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 Maximum Variation from Calculated L10 Life = percent 100
 

  
×

−

10

1010

L

LL

Calculated

CalculatedMaximum
 (9a)  

 

  Minimum Variation from Calculated L10 Life = percent 100
 

  
×

−

10

1010

L

LL

Calculated

CalculatedMinimum
 (9b) 

 
 
 
 

Table 2. Summary of minimum and maximum life values from Monte Carlo simulation of assembly and testing  
of 340 sets of 50-mm bore, deep-groove, and angular-contact ball bearings 

Maximum and minimum values of bearing life, hrs,  
and Weibull slope, e 

Variation from calculated 
L10 life, percent 

Maximum Corresponding Minimum Corresponding 

Number 
of 

bearings 
in a set L10 L50 e L10 L50 e 

L10 lives 
below  
that 

calculated, 
percent 

Maximum Minimum 

Deep-groove ball bearings 
2 38709 66136 3.52 375 13478 0.53 40 461 �95 
3 26767 65208 2.12 272 16186 0.46 70 286 �96 
4 19331 78650 1.34 279 8500 0.55 60 180 �96 
5 14091 63944 1.25 2619 15980 1.04 70 104 �59 
6 23138 46278 2.72 270 14610 0.47 40 235 �96 
10 10419 46713 1.26 1927 13845 0.96 80 51 �72 
20 13538 55996 1.33 1176 13118 0.78 70 96 �82 
22 12750 47314 1.44 1858 30048 0.68 60 84 �73 
24 8526 41966 1.18 2886 27613 0.83 60 23 �58 
26 10224 42022 1.33 4961 36330 0.95 40 48 �28 
28 17635 54305 1.68 3946 29727 0.93 70 155 �43 
30 10362 43021 1.32 3940 37090 0.84 50 50 �43 
40 10318 36939 1.48 6769 34633 1.15 20 49 �11 
50 9469 41669 1.27 3956 29150 0.94 50 37 �43 
100 9936 51583 1.14 5033 32938 1.00 50 44 �27 
200 9217 42421 1.23 6663 37852 1.08 30 33 �4 
1000 7754 40660 1.14 6390 34511 1.18 10 12 �11 

Angular-contact ball bearings 
2 3696 4269 13.08 39 2906 0.44 60 283 �95 
3 4612 17330 1.42 96 5026 0.48 60 378 �90 
4 6194 15929 2.00 293 3674 0.75 40 542 �70 
5 4203 7164 3.53 279 6267 0.61 40 336 �71 
6 4404 10753 2.11 565 5013 0.86 40 357 �41 
10 2179 8112 1.43 105 2648 0.58 40 126 �89 
20 1612 6005 1.43 341 3908 0.77 70 67 �65 
22 1756 6799 1.39 241 4205 0.66 80 82 �75 
24 1903 8741 1.24 465 3746 0.90 40 97 �52 
26 1431 5526 1.39 463 4551 0.84 70 48 �52 
28 1560 5860 1.42 579 5246 0.86 70 62 �40 
30 1423 5651 1.37 609 4289 0.97 50 48 �37 
40 1701 7281 1.30 476 4835 0.81 80 76 �51 
50 1406 7275 1.15 708 4785 0.99 40 46 �27 
100 1471 6889 1.22 751 4708 1.03 40 53 �27 
200 1179 5597 1.21 852 5210 1.04 60 22 �12 
1000 1101 5429 1.18 917 5067 1.10 30 14 �5 
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The life results and variations are summarized in 
Table 2. The variations were plotted on semi-log paper 
and are shown in Figs. 3(a) and 3(b) for the deep-groove 
and angular-contact ball bearings, respectively. Best-fit 
curves obtained using the linear regression package of a 
commercial spreadsheet were fitted through the points 
for the minimum and maximum values shown in each of 
the plots. The results for both sets of bearings were 
nearly identical. From these curve fits and Eqs. (9a) and 
(9b), the life equations from each set of the respective 
curves were as follows 

 
Maximum L10 Life = Calculated L10 Life (1 + 6n�0.6) 

(10a) 
 
Minimum L10 Life = Calculated L10 Life (1 � 1.5n�0.33) 
where n > 3                                                               (10b) 
 
Minimum L10 Life → 0   where n ≤ 3 

 
These life equations hold for any bearing geometry with 
a known calculated L10 life. 

Relating these results to experimental research, the 
resultant L10 life should fall between these values if the 
true life is no different from the analytically predicted 
(calculated) life. If, however, the L10 life is greater than 
the Maximum Variation L10 Life, then the true life is 
probably greater than that calculated. If the L10 life is 
less than the Minimum Variation L10 Life, it must be 
reasonably concluded that the true L10 life is probably 
less than that calculated.  

The data were studied to determine if the number of 
bearings tested affects whether the resultant L10 life will 
be less or more than that calculated. Out of the 170 trials 
comprising 15700 angular-contact ball bearings, the 
resultant L10 life was less than that calculated 54 percent 
of the time. For 170 trials comprising 15700 deep-
groove ball bearings, the resultant L10 life was less than 
that calculated 51 percent of the time. The variation was 
random and independent of the number of bearings 
tested.  

From this Weibull-based Monte Carlo study, for the 
thrust-loaded angular-contact ball bearings it was found 
that 45.4 percent of the failures occur on the inner race, 

45.2 percent occur on the balls, and 9.4 percent on the outer race. For the radially loaded deep-groove ball bearings, 
70.1 percent of the failures occur on the inner race, 15.1 percent on the balls, and 14.8 percent on the outer race. The 
failure locations for radially loaded cylindrical roller bearings are expected to be similar to those of the deep-groove 
ball bearing.  

Similar failure trends in the percentage of individual components failed with respect to total system can be 
derived from the Lundberg-Palmgren model for system failure (5). The percentage of the bearing failures that are 
due to failure of the inner race can be derived using Eq. (5) and expressed as 
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   of n bearings compared with 90% confidence limits
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   (b) 50-mm bore angular-contact ball bearing. 
   (c) 90% confidence limits.
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Table 3. Comparison of bearing component failure distributions based upon a Weibull-based Monte Carlo method 
and calculated from Lundberg-Palmgren system life equation for deep-groove and angular-contact ball bearings 

Percent Failure Bearing Type Component 
Weibull-based Monte 

Carlo result 
Calculated from Lundberg-

Palmgren Eq. (5) 
Inner Race 70.1 69.9 
Rolling Element 14.8 15.0 

 Deep-Groove 
 Ball Bearing 
 Outer Race 15.1 15.0 

Inner Race 45.4 45.1 
Rolling Element 45.2 45.1 

 Angular Contact 
 Ball Bearing 

Outer Race 9.4 9.7 
 
where L10 sys is the life at which 10 percent of the assembled systems have failed, L10 ir is the life at which 10 percent 
of the inner rings have failed, L10 or is the life at which 10 percent of the outer rings have failed, and e is the Weibull 
slope. A derivation of Eq. (11) is provided in the appendix. The percentage of rolling elements failed or the 
percentage of outer races failed can be expressed similarly (see the appendix). Table 3 is a summary of the 
percentage of inner race, rolling element, and outer race failures obtained from the Weibull-based Monte Carlo 
method and Eq. (11). There is excellent agreement between these techniques. 

Assuming that the calculated L10 life is exact and not subject to unknown manufacturing or operating variables, 
there is an even (50 %) probability that the resultant L10 life for any randomly selected bearing test group will be less 
than that calculated. As the number of bearings in a test group increases, the resultant life approaches the predicted 
life but with half the lives still being less than that calculated. 

 
Confidence Limits 

 
The results of the above analysis were compared by us to that of L. Johnson (11) who determined the 90-percent 

confidence limits as a function of Weibull slopes of 1, 1.5, and 2 and the number of failed bearings n in a set. These 
confidence limits for the L10 life are plotted in Fig. 3(c). The confidence limits designate that the true population of 
the L10 lives will fall between the upper and lower values in 90 percent of all possible cases or tests (11). An 
approximate curve fit of the Johnson analysis results in the following approximate equations for the upper and lower 
values of the L10 life 90-percent confidence limits 

For Weibull slope = 1 
 

 Upper limit: L10up = calculated L10 + 26.5 calculated L10 /n
0.8  (12a) 

 
 Lower limit: L10L = calculated L10 � calculated L10(1.2 � 0.17lnn) (12b) 
  
 L10L → 0 where n ≤ 3 (12c) 

   
For Weibull slope = 1.5 
 

 Upper limit: L10up = calculated L10 + 9.5 calculated L10 /n
0.7  (13a) 

 
 Lower limit: L10L = calculated L10 � calculated L10(1 � 0.15lnn) (13b) 
  
 L10L = calculated L10 where n ≥ 786  (13c) 
  

For Weibull slope = 2 
 

 Upper limit: L10up = calculated L10 + 5.5 calculated L10 /n
0.6  (14a) 

 
 Lower limit: L10L = calculated L10 � calculated L10(0.87 � 0.13lnn) (14b) 
 
  L10L = calculated L10 where n ≥≥≥≥ 800  (14c) 
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The results from Figs. 3(a) and 3(b) were superimposed in Fig. 3(c). What is significant is that the minimum 
variation values of the L10 life coincide with the lower 90-percent confidence limits for a Weibull slope of 1. 
However, there are small differences in life between the lower life limits for Weibull slopes of 1, 1.5, and 2. The  
90-percent confidence limits of L10 life for a Weibull slope of 1.5 best correlated with the Monte Carlo results for the 
upper and lower life variations as a function of the number of bearings tested to failure and is independent of 
whether the bearing is thrust or radially loaded. 

 
Maximum Likelihood Estimators (MLE) 

 
The curve fits of the upper and lower bounds of the Monte Carlo generated bearing lives (Eqs. (10a) and (10b)) 

and the tabulated 90% confidence limits for a Weibull slope of 1.5 from Johnson (11) (Eqs. (13a) and (13b)) are in 
excellent agreement. These curves are expressed in easy to apply algebraic equation defining bearing life variation. 
As will be discussed, bearing data available in the open literature (7,8) reasonably fall between these easily 
established limits. Another method for calculating these upper and lower bounds is maximum likelihood estimators 
(MLE).  

MLE can be obtained from the methods of Cohen (14), Harter and Moore (15), and McCool (16), from which 
confidence limits can be established (17). Figure 4 includes the upper and lower bounds established from the 
Weibull-based Monte Carlo technique (Eqs. (10a) and (10b)), the 90%-confidence limits based upon Johnson  
(Eqs. (14a) and (14b)) and the confidence limits based upon MLE. In general, there is good agreement among these 
techniques.  

The confidence levels based upon the MLE are more complicated to calculate than either Eqs. (10a) and (10b) 
or (14a) and (14b). The MLE is an iterative process. It can be sensitive to the choice of starting values, and the 
calculation is usually non-trivial, tending to require the use of computational software. It should be noted that the 
maximum likelihood limits can be biased for small sample sizes. Additionally, the information available in the open 
literature (17) limits the assignment of confidence limits and the application of these techniques to several narrowly 
defined cases of limited engineering application.  

Of the 340 bearing population studied by us and bounded by both the Monte Carlo results (Eqs. (10a) and 
(10b)) and the 90% confidence limit curve fits of Johnson (Eqs. (13a) and (13b)), the confidence limits based upon 
MLE can be determined for only 8 cases without extensive additional Monte Carlo simulations. It is worth noting 
that an engineering approach to confidence intervals has been proposed by Houpert (18), and is based upon a linear 
regression curve fitting technique. The technique is more complex than the algebraic equations (Eqs. (10a), (10b), 
(13a), and (13b)) presented by us. A comparison between our technique and that of Houpert (18) is beyond the scope 
of this paper. 
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Fig. 4.—Comparison of 90% confidence limits from
   maximum likelihood estimates (MLE) (14,17) of 
   maximum and minimum variation of L10 lives 
   as percent of calculated L10 to that of Johnson 
   (11) and Monte Carlo method for 50-mm bore 
   deep-groove ball bearing.
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Weibull Slope Variation 
 
Lundberg and Palmgren (5) assumed the value of the 

Weibull slope e in Eq. (1) to be 1.11. This value was 
necessary in their analysis because it approximated that value 
exhibited by their experimental data and it made the end 
result of their life prediction analysis correlate with their 
bearing life database at that time. Experience has shown that 
most rolling bearing life data exhibit Weibull slopes between 
1 and 2. For the analysis performed by us, we too assumed a 
Weibull slope of 1.11 for all of the components for each 
bearing. This should theoretically result in a bearing Weibull 
slope of 1.11 as shown in Fig. 1 for the deep-groove and 
angular-contact ball bearings.  

Johnson (11) analyzed the probable variation of the 
Weibull slope as a function of the number of bearings tested 
to failure. Based on the Johnson analysis (11), in 90 percent 
of all possible cases the resultant Weibull slope will be 
within the limits shown in Fig. 4 based upon a Weibull slope 
of 1.11. Based on Johnson (11), the approximate relation for 
the number of bearings failed n and the limits of the value of 
Weibull slope e equal to 1.11 are as follows: 

 
Maximum Weibull slope = 1.11 + 1.31 n�0.5 (15a)
 
Minimum Weibull slope = 1.11 � 1.31 n�0.5 (15b)

 
The results of the extremes in the Weibull slopes for 

each group of the ten bearing trials of n bearings are 
compared with the Johnson analysis in Fig. 5(a). Note that 
the Weibull slopes for the data summarized in Table 2 for the 
maximum and minimum bearing lives are not necessarily the 
same as the maximum and minimum values of the Weibull 
slopes for each of trials of n bearings. For the data reported in 
Table 2 the relation between the number of bearings tested 
and the limits of the Weibull slope are as follows: 

 
Maximum Weibull slope = 1.2 + 5(lnn)�3  (16a)
 
Minimum Weibull slope = 1.11 � 0.95n�0.33 (16b) 
 
Where the number of bearings failed is 10 or greater, there is 
a reasonably good correlation between the limits of the slopes 

generated from the Johnson analysis (11) and those from our Monte Carlo bearing tests. Where the number of failed 
bearings is below 10, there are differences between the extremes in Weibull slope between the Monte Carlo bearing 
tests and those of Johnson, especially at the upper limits for the Weibull slopes. 

  
Comparison With Bearing Data 

 
Harris (7,8) analyzed 62 rolling-element bearing endurance sets. These data were obtained from four bearing 

manufacturers, two helicopter manufacturers, three aircraft engine manufacturers, and U.S. Government agency-
sponsored technical reports. The data sets comprised deep-groove radial ball bearings, angular-contact ball bearings, 
and cylindrical roller bearings for a total of 7935 bearings. Of these, 5321 bearings comprised one sample size for a 
single cylindrical roller bearing leaving 2614 bearings distributed among the remaining bearing types and sizes. 
Among the 62 rolling-element bearing endurance sets, 11 had one or no failure and could not be used for our 
analysis. These data are summarized in Table 4. A discussion of the Harris data can be found in Refs. (6) and (9).  
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   each group of ten bearing trials of n bearings. 
   (b) Weibull slopes from 51 sets of ball and roller 
   bearing data from ref. (7,8).
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Table 4. Summary of rolling-element bearing life data for three bearing types  

(data from Ref. (7)) 
Bearing set 

identification 
numbera 

Maximum 
Hertz 

stress, GPa 
(ksi) 

Ratio of 
actual L10 

life to 
calculatedb 

Weibull 
slope,  

e 

Failure 
indexc 

L10 life 
variation 

from 
calculated, 

percentd 

Steel and 
processing 

Deep-groove ball bearing; load-life exponent, p = 3 
6 3.13 (454) 3.42 2.29 11/18 242 VARe  

AISI M�50 
18 4.03 (584) 8.77 2.22 3/6 777 CVDf  

AISI 52100 
28 3.41 (495) 4.88 2.29 7/30 388 VIM-VARg  

AISI M�50 
29 3.41 (495) 9.88 1.06 3/28 888 VIM-VAR  

AISI M�50 
30 3.55 (515) 4.67 0.72 6/37 367 VIM-VAR  

AISI M�50 
40 3.41 (495) 0.89 0.51 11/40 �11 CVD 

AISI 52100 
41 3.41 (495) 6.85 0.70 2/41 585 CVD 

AISI 52100 
42 3.41 (495) 3.80 2.65 23/37 280 CVD 

AISI 52100 
43 3.88 (563) 0.89 1.28 7/11 �11 CVD 

AISI 52100 
44 3.41 (495) 1.51 0.89 7/37 51 CVD 

AISI 52100 
46 3.88 (563) 2.99 2.22 22/40 199 CVD 

AISI 52100 
47 3.41 (495) 2.53 0.65 4/33 153 CVD 

AISI 52100 
48 3.41 (495) 0.52 3.48 33/40 �48 VIM-VAR  

AISI M�50 
49 3.41 (495) 1.50 0.68 6/40 50 VIM-VAR  

M�50NiL 
50 3.41 (495) 4.98 1.23 5/40 398 VIM-VAR  

M�50NiL 
51 3.1 (539) 3.16 1.33 3/28 216 CVD 

AISI 52100 
53 3.12 (452) 1.53 0.65 9/67 53 CVD 

AISI 52100 
54 3.72 (539) 2.11 0.93 21/60 111 CVD 

AISI 52100 
55 3.72 (539) 1.44 0.95 57/57 44 CVD 

AISI 52100 
56 3.72 (539) 5.21 0.72 8/30 421 CVD 

AISI 52100 
57 3.72 (539) 2.32 0.70 12/30 132 CVD 

AISI 52100 
58 3.72 (539) 4.85 0.69 8/29 385 CVD 

AISI 8620 
59 3.72 (539) 5.88 1.20 12/29 488 CVD 

AISI 8620 
60 3.72 (539) 0.38 2.75 29/29 �62 CVD 

AISI 52100 
61 2.97 (431) 3.27 1.36 43/103 227 CVD 

AISI 52100 
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Table 4. Summary of rolling-element bearing life data for three bearing types  
(data from Ref. (7)) (continued) 

Bearing set 
identification 

numbera 

Maximum 
Hertz 

stress, GPa 
(ksi) 

Ratio of 
actual L10 

life to 
calculatedb 

Weibull 
slope,  

e 

Failure 
indexc 

L10 life 
variation 

from 
calculated, 

percentd 

Steel and 
processing 

62 2.97 (431) 1.45 1.21 23/79 45 CVD 
AISI 52100 

Angular-contact ball bearings; load-life exponent, p = 3 
1 3.65 (530) 7.63 0.14 2/12 663 VIM-VAR  

M�50NiL 

2 1.69 (245) 96 1.15 3/199 9500 VIM-VAR 
AISI M�50 

4 2.01 (292) 3.26 0.84 5/17 226 VAR 
AISI M�50 

8 2.07 (300) 4.46 1.14 2/10 346 VAR 
AISI M�50 

9 2.34 (339) 1.11 0.84 5/10 11 VAR 
AISI M�50 

10 2.34 (339) 1.04 0.69 4/10 4 VAR 
AISI M�50 

12 2.70 (391) 3.37 1.91 5/8 337 VAR 
AISI M�50 

32 2.23 (324) 6.33 1.08 3/30 533 VIM-VAR 
AISI M�50 

33 1.97 (286) 1.11 0.81 3/20 11 VIM-VAR 
AISI M�50 

34 1.97 (286) 2.26 1.10 2/20 126 VIM-VAR 
AISI M�50 

35 1.25 (181) 2.08 0.80 2/64 108 VIM-VAR 
AISI M�50 

37 1.28 (185) 3.46 0.95 7/362 246 VIM-VAR 
AISI M�50 

38 1.28 (185) 101.62 0.67 2/634 10062 VIM-VAR 
AISI M�50 

39 1.28 (185) 12.85 0.20 2/33 1185 VIM-VAR 
AISI M�50 

Cylindrical roller bearings; load-life exponent, p = 10/3 
3 1.22 (177) 36 1.00 13/5321 3500 VIM-VAR 

AISI M�50 
5 2.15 (312) 90 0.21 2/19 8900 VAR 

AISI M�50 
14 2.45 (356) 16 3.63 6/6 1500 CVD 

AISI 52100 
15 2.45 (356) 2165 2.43 6/6 2065 VAR 

AISI M�50 
16 2.39 (346) 1.57 0.74 4/7 57 CVD 

AISI 52100 
17 2.39 (346) 6.49 0.48 2/8 549 VAR 

AISI M�50 
20 2.23 (324) 6.94 1.08 3/6 594 CVD 

AISI 52100 
22 2.34 (339) 4.78 1.90 3/6 378 CVD 

AISI 52100 
24 2.29 (332) 10.5 0.75 4/6 905 CVD 

AISI 52100 
26 2.35 (341) 11.23 1.23 4/6 1023 CVD 

AISI 52100 



NASA/TM�2003-212186 14

Table 4. Summary of rolling-element bearing life data for three bearing types  
(data from Ref. (7)) (concluded) 

Bearing set 
identification 

numbera 

Maximum 
Hertz 

stress, GPa 
(ksi) 

Ratio of 
actual L10 

life to 
calculatedb 

Weibull 
slope,  

e 

Failure 
indexc 

L10 life 
variation 

from 
calculated, 

percentd 

Steel and 
processing 

27 2.35 (341) 7.63 0.67 4/6 663 VAR 
AISI M�50 

aRefers to bearing sets as identified in Refs. (7) and (8) 
bLife calculation based on Lundberg-Palmgren equations with STLE life factors 
cNumber of bearings failed out of number of bearings in a set 
dRefer to Eqs. (2) and (9) 
eVacuum arc remelting 
fCarbon vacuum degassing 
gVacuum induction melting, vacuum arc remelting 
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Fig. 6.—Variation between actual and calculated 
   L10 bearing lives for 51 sets of deep-groove and 
   angular-contact ball bearings and cylindrical roller
   bearings from ref. (7,8) compared to Monte Carlo 
   variations and 90% confidence limit.
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There is insufficient technical information reported in Refs. (7) and (8) regarding bearing geometry, operating 
conditions, fit-ups, and material properties as well as individual data points and Weibull plots to independently 
evaluate the life results reported. However limited, these results are the best compilation of bearing life data in the 
open literature. 

The data of Table 4 are plotted in Fig. 6 using the number of bearings failed rather than the number of bearings 
in a set. These data are compared to the maximum and minimum life variations of Fig. 3 and the 90-percent 
confidence upper limit for a Weibull slope of 1 from Fig. 3(c) and Eq. (13a). Figure 6 consists of 51 sets of bearing 
data. These data suggest a greater variation between calculated and resultant L10 lives than that of the Monte Carlo 
virtual bearing tests of Figs. 3(a) and 3(b).  

Of these data, 39 percent fall between the maximum and minimum life variations suggesting that the statistical 
variations of these lives are within that predicted. Four bearing sets representing 8 percent of the bearing sets had 
lives less than that predicted. Thirty bearing sets or 59 percent of the bearing sets exceeded the maximum life 
variation of this Monte Carlo study. Eight of these bearing sets or 16 percent exceeded the 90-percent confidence 
upper limit of Johnson. However, only one bearing set representing 2 percent of the bearing sets fall below the lower 
life limit. Therefore, it can be reasonably concluded that 98 percent of the bearing sets have acceptable life results 
using the Lundberg-Palmgren equations with the life adjustment factors from Ref. (1) to predict bearing life. 
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Fig. 7.—Variation between actual and calculated 
   L10 bearing lives for deep-groove ball bearings
   as a function of load-life exponent p. (a) Load-life
   exponent p = 3 (from Fig. 6). (b) Load-life exponent
   p = 3.5 and 4.
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Fig. 8.—Variation between actual and calculated 
   L10 bearing lives for angular-contact ball bearings
   as a function of load-life exponent p. (a) Load-life 
   exponent p = 3 (from Fig. 6). (b) Load-life exponent
   p = 3.5 and 4.
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Figure 7(a) consists only of the deep-groove ball bearings from Fig. 6. There are 26 deep-groove ball bearing 
sets comprising 51 percent of all bearing sets. Of these 11 bearings sets or 42 percent are between the maximum and 
minimum life values. One bearing set representing 4 percent of the deep-groove ball bearings falls below the lower 
life value. Fourteen or 54 percent of the bearing sets exceeded the maximum life value. Three of these bearing sets 
or 12 percent exceeded the 90-percent confidence upper limit. For the deep-groove bearing sets, it can also be 
concluded that by using the Lundberg-Palmgren equations with life adjustment factors to predict bearing life,  
96 percent of the bearing sets have acceptable life results.  

Figure 8(a) consists only of the angular-contact ball bearings from Fig. 6. There are 14 angular-contact ball 
bearing sets comprising 27 percent of all bearing sets. All of the bearing sets equaled or exceeded the predicted life 
value. Of these 8 bearings sets or 57 percent are between the predicted and maximum life variation. Six or  
43 percent of the bearing sets exceeded the maximum life variation. Three of these bearing sets or 14 percent exceed 
the 90-percent confidence upper limit. For the angular-contact ball bearing sets, it can also be concluded that by 
using the Lundberg-Palmgren equations with life adjustment factors used to calculate bearing life, 100 percent of the 
bearing sets have acceptable life results. 

Based upon the work of Zaretsky, Poplawski, and Peters (6, 19, 20) it can be concluded that the life of these 
bearings are under-predicted. They suggest that for ball bearings the load-life exponent p from Eq. (2) should be  
4 instead of 3 used by Lundberg and Palmgren (5) and reflected in the data of Figs. 7(a) and 8(a). The life data for 
the ball bearings of Figs. 7(a) and 8(a) were recalculated using load-life exponent values p of 3.5 and 4. The results 
are shown and compared in Figs. 7(b) and 8(b) for the deep-groove and angular-contact bearings, respectively. A 
load-life exponent of 4 best reflects the variation in the ratio of the actual life to the predicted life and p = 3 is 
conservative commensurate with good engineering practice.  
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Figure 9(a) comprises only the cylindrical roller 
bearings from Fig. 6. There are 11 cylindrical roller 
bearing sets comprising 22 percent of all bearing sets.  
Of these, one bearing set or one percent is between the 
maximum and minimum life variation. No bearing set 
falls below the lower life variation. Ten or 91 percent 
of the bearing sets exceeded the maximum life 
variation and 6 of these bearing sets or 55 percent 
exceeded the 90-percent confidence upper limit. For the 
cylindrical roller bearing sets, it can also be concluded 
that by using the Lundberg-Palmgren equations with 
life adjustment factors to predict bearing life, 100 
percent of the bearing sets have acceptable life results.  

Referring again to Eq. (2), the value for the load-
life exponent p for cylindrical roller bearings as used 
by Lundberg and Palmgren is 10/3 or 3.333. Poplawski, 
Peters and Zaretsky (19,20) stated that based upon their 
experience and analysis, the load-life exponent p of 
10/3 is incorrect and will under predict roller bearing 
life. It was their recommendation that this value be 
revised to 4 with consideration given to increasing it  
to 5. Based their recommendation, the data for the 
cylindrical roller bearings from Fig. 9(a) were 
recalculated by us using values of p equal to 4, 4.5,  
and 5. These results are shown in Fig. 9(b). A load-life 
exponent of p = 5 best reflects the cylindrical bearing 
life results that are reported. However, by using a value 
of p = 4 a more conservative life prediction results that 
may be more commensurate with good engineering 
practice. 

Table 5 shows the effect on bearing life using 
different values of the load-life exponent p for ball  
and roller bearings at three load conditions. The table 
was normalized to the light load condition where  
Peq = 0.05 CD. What is apparent from this table and 
  
  

 
Table 5. Effect of load-life exponent, p, on bearing life prediction 

Relative life 
Load-life exponent, p 

Ball bearings Roller bearings 

Bearing  
load Peq,  

percent dynamic 
load capacity CD 3a 3.5 4 10/3b 4 4.5 5 

Light load, 5 1 4.47 20 1 7.4 33 148 
Normal load, 10 0.13 0.40 1.25 0.10 0.46 1.46 4.61 
Heavy load, 20 0.02 0.03 0.08 0.01 0.03 0.06 0.14 

Life factor 
Light load, 5 20c 4.5 1 148d 20 4.5 1 
Normal load, 10 10 3.2 1 46 10 3.2 1 
Heavy load, 20 5 2.2 1 15 5 2.2 1 
aNormalized to load-life exponent p = 3 and light load 
bNormalized to load-life exponent p = 10/3 and light load 
cNormalized to load-life exponent p = 4 
dNormalized to load-life exponent p = 5 
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Fig. 9.—Variation between actual and calculated 
   L10 bearing lives for cylindrical roller bearings 
   as a function of load-life exponent p. (a) Load-life
   exponent p = 10/3 (from Fig. 6). (b) Load-life 
   exponent p = 4, 4.5, and 5.
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the bearing data is that there is built into the Lundberg-Palmgren life calculations a very conservative safety factor 
depending on the load. For lightly loaded ball bearings, this factor could be as high as 20 and for heavy loaded ball 
bearings as much as 4. For roller bearings, the factor for lightly loaded bearings is 149 and heavy loaded bearings as 
much as 14. 

Referring to the bearing data of Table 4 and Fig. 6, only 4 sets of data are less than that predicted and only two 
significantly. This results in 92 percent of the bearing sets equaling and/or exceeding the currently predicted life. 
Should the load-life exponent p be changed to its correct value and more correctly predict bearing life, there is a 
probability that 50 percent of the bearings in small subsets would not reach their predicted life in actual application. 
From a design engineering approach, it would be prudent engineering practice to maintain the load-life exponent  
p = 3 for ball bearings. However, we suggest that the load-life exponent p = 10/3 for roller bearings be changed to  
p = 4. This would result in each bearing type having similar life factors for purposes of design as shown in Table 5. 

The Weibull slopes for each of the bearings are plotted in Fig. 5(b). While most of the scatter falls within the 
predicted range, approximately 25 percent of the Weibull slopes for the bearing data fall outside that predicted. 
These results correlate with the Weibull slopes obtained with the Monte Carlo bearing virtual data. It can be 
concluded that larger deviations in bearing Weibull slope can occur than predicted by Johnson�s method based on  
a Weibull slope of 1.11, even with bearing sets of n equal 30.  
 

Material and Processing Effects 
 

The life calculations for the data of Table 4 and Fig. 6 have material and steel processing life factors 
incorporated in them from Ref. (1). Table 6 breaks down and summarizes these life factors for each of the materials 
listed in Table 4. The data of Table 4 and Fig. 6 are broken down and plotted in part (a) of Figs. 10 through 13 based 
on material and steel processing variables. These data were adjusted for a load-life exponent p of 4 for ball bearings 
and 5 for roller bearings and are shown in part (b) of Figs. 10 through 13. The adjusted life results correlated with 
those of the Monte Carlo tests shown in Fig. 3. Based upon these material and processing life factors and load-life 
exponents, each bearing data set appears consistent with the other. However, for AISI 8620 steel, these data suggest 
that the material factor should be increased from 1.5 to 2.  

 
 
 

 Table 6. Life factors for bearing steels and 
processing (from Ref. (1)) 

Life factor Material and 
process Material Process Resultant 

CVDa 
AISI 52100 

3 1.5 4.5 

CVDa 
AISI 8620 

1.5 1.5 2.25 

VARb 
AISI M�50 

2 3 6 

VIM-VARc 
AISI M�50 

2 6 12 

VIM-VARc 
M�50NiL 

4 6 24 

aCarbon vacuum degassing 
bVacuum arc remelting 
cVacuum induction melting, vacuum arc remelting 
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Fig. 10.—Effect of CVD AISI 52100 steel and load-life
   exponent on bearing life. (a) Load-life exponent p, 
   3 for ball bearings; 10/3 for cylindrical roller bearings
   (from Fig. 6). (b) Load-life exponent p, 4 for ball 
   bearings; 5 for cylindrical roller bearings.
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Fig. 11.—Effect of VAR AISI M-50 steel and load-life
   exponent on bearing life. (a) Load-life exponent p, 3
   for ball bearings; 10/3 for cylindrical roller bearings 
   (from Fig. 6). (b) Load-life exponent p, 4 for ball 
   bearings; 5 for cylindrical roller bearings.
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Fig. 12.—Effect of VIM-VAR AISI M-50 steel and load-
   life exponent on bearing life. (a) Load-life exponent 
   p, 3 for ball bearings; 10/3 for cylindrical roller bear-
   ings (from Fig. 6). (b) Load-life exponent p, 4 for ball
   bearings; 5 for cylindrical roller bearings.
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Fig. 13.—Effect of VIM-VAR M-50Nil and CVD AISI 
   8620 steels and load-life exponent on bearing life.
   (a) Load-life exponent p, 3 for ball bearings (from 
   Fig. 6). (b) Load-life exponent p, 4 for ball bearings.
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Comparing Life Results to Prediction 
 

Rules can be implied from the results of this paper to compare and distinguish tests of identical bearings either 
from two or more sources or made from different manufacturing methods. The following rules are suggested to 
determine if the bearings are acceptable for their intended application or if there are significant differences between 
the two groups of bearings. 

 
1. If the L10 lives of both bearing tests are between the Maximum and Minimum L10 life variations, there can 

be no conclusion that there is a significant difference between the two sets of bearings regardless of the 
ratio of the L10 lives. The bearing sets are acceptable for their intended application (Fig. 14(a)). 

2. If the L10 life of one set of bearings is greater than the maximum variation and the second set is less the 
minimum value, there exists a significant difference between the bearing sets. Only, one bearing set is 
acceptable for its intended application (Fig. 14(b)). 

3. If the L10 lives of both sets of bearings exceed the maximum variation, the bearing life differences may or 
may not be significant and should be evaluated based upon calculation of confidence numbers according to 
the method of Johnson (11). Both sets of bearings are acceptable for their intended application (Fig. 14(c)). 



NASA/TM�2003-212186 20

4. If the L10 lives of both sets of bearings are less than the minimum variation, the bearing life differences may 
or may not be significant. However, both sets of bearings are not acceptable for their intended application 
(Fig. 14(d)). 

5. If the L10 life of one set of bearings exceed the maximum variation and the other set is between the 
maximum and minimum variation, the bearing life differences may or may not be significant and should be 
evaluated based upon calculation of confidence numbers according to the method of Johnson (11). Both 
sets of bearings are acceptable for their intended application (Fig. 14(e)). 

6. If the L10 life of one set of bearings is less than the minimum variation and the other set is between the 
maximum and minimum variation, there exists a significant difference between the bearing sets. Only, one 
set of bearings is acceptable for its intended application (Fig. 14(f)). 

 
 
 
 
 

Fig. 14.—Rules for comparing bearing life results to calculated life. (a) A and B bearing
   sets are acceptable. (b) A bearing set is acceptable. B bearing set not acceptable. 
   (c) A and B bearing sets are acceptable. (d) A and B bearing sets are not acceptable.
   (e) A and B bearing sets are acceptable. (f) A bearing set is acceptable. B bearing set
   not acceptable.
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SUMMARY OF RESULTS 
 

Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this 
study. Three hundred forty (340) virtual bearing sets totaling 31400 bearings were randomly assembled from three 
virtual part bins for each of the bearing types by Monte Carlo (random) number generation. The life of each 
individual bearing based upon the weak link theory was determined as being the life of the lowest lived randomly 
selected component of that bearing. Using the method of Johnson (11), the individual bearing lives for each group of 
n bearings were plotted on Weibull plots and the L10 lives and Weibull slopes were determined. The Monte Carlo 
results were compared with endurance data from 51 bearing sets comprising 5321 bearings. The following results 
were obtained: 

 
1. A simple algebraic relationship was established for the upper and lower bearing L10 life limits as function 

of number of bearings failed for any bearing geometry. 
2. Assuming an ideal and accurate bearing life prediction procedure, randomly assembled and selected 

bearings from a carefully controlled large bearing population will result in a fifty percent (50 %) 
probability that the resultant bearing life will be less than that calculated regardless of the number of failed 
bearings making up the randomly selected group. However, the variation of the resultant life from that 
calculated will decrease as the number of failed bearings in the randomly selected group increases. 

3. The maximum and minimum variation between the bearing resultant life and the calculated life was found 
to correlate with the 90-percent confidence limits for a Weibull slope of 1.5 and is independent of whether 
the bearing is thrust or radially loaded. 

4. Recalculating the lives for the actual bearing data using a load-life exponent p of 4 for ball bearings and  
5 for roller bearings results in a reasonable correlation between the maximum and minimum values of the 
Monte Carlo generated bearing lives and the actual bearing life data. For design purposes, the Lundberg-
Palmgren life calculations incorporating a load-life exponent p of 3 for ball bearings should be retained. 
However, the load-life exponent p for roller bearings should be changed from 10/3 to 4. 

5. The STLE life factors for bearing steel and processing in conjunction with the Lundberg-Palmgren life 
equation provide a reasonable accounting of differences in the material chemistry and processing. 
However, the material life factor for AISI 8620 should be changed from 1.5 to 2. 

6. Maximum and minimum variations in Weibull slope from the Monte Carlo testing and bearing endurance 
data correlated with predicted values and was a function of the number of bearing failures. The greater the 
number of failures the less variation in the Weibull slope from that predicted.  

7. There is excellent agreement between the percentage of individual components failed from Monte Carlo 
simulation and that predicted from the method of Johnson. 
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APPENDIX 
 
G. Lundberg and A. Palmgren (5) using the Weibull equation (2�4) first derived the relationship between 

individual component lives and system life where 
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Therefore, the system life of a bearing composed of three components (inner race, rolling element, and outer 
race) that can fail is expressed as 

 
 [1/Lsys]

e = [1/Lir]
e + [1/Lre]
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e Eq. (5) 

 
where Lir is the life of the inner race, Lre is the life of the rolling element, Lor is the life of the outer race and e is the 
Weibull slope. The fraction of failures due to the failure of a component of a system is expressed by Johnson (11) as 
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Therefore, to determine the fraction of inner-ring (ir) failures Eq. (5), which is a definition of the total system 

life, is multiplied by Lir
e. 
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Thus, from Eqs. (A�1a) and (A�2) 
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Subsequently, the fraction of rolling-element (re) failures can be expressed as 
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and the fraction of outer-ring (or) failures can be expressed as 
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